已知三角形ABC,三内角满足A+B=2C,1/COSA+1/COSC=负根号2处以COSB,求COS(A-C)/2
已知三角形ABC,三内角满足A+B=2C,1/COSA+1/COSC=负根号2处以COSB,求COS(A-C)/2...
已知三角形ABC,三内角满足A+B=2C,1/COSA+1/COSC=负根号2处以COSB,求COS(A-C)/2
展开
展开全部
因A+B+C=π,又A+C=2B
得B=π/3
1/cosA+1/cosC=-2√2
=>(cosA+cosC)=-2√2cosAcosC
=>2cos(A-C)/2cos(A+C)/2=-√2[cos(A+C)+cos(A-C)]
=>cos(A-C)/2=-√2[-1/2+cos(A-C)]
=>cos(A-C)/2=-√2[-1/2+2cos²(A-C)/2-1]
=>4cos²(A-C)/2+√2cos(A-C)/2-3=0(|A-C|/2<π/3)
cos(A-C)/2=[-√2+√(2+48)]/8(负根舍去)
=√2/2
得B=π/3
1/cosA+1/cosC=-2√2
=>(cosA+cosC)=-2√2cosAcosC
=>2cos(A-C)/2cos(A+C)/2=-√2[cos(A+C)+cos(A-C)]
=>cos(A-C)/2=-√2[-1/2+cos(A-C)]
=>cos(A-C)/2=-√2[-1/2+2cos²(A-C)/2-1]
=>4cos²(A-C)/2+√2cos(A-C)/2-3=0(|A-C|/2<π/3)
cos(A-C)/2=[-√2+√(2+48)]/8(负根舍去)
=√2/2
展开全部
因A+B+C=π,又A+C=2B
得B=π/3
1/cosA+1/cosC=-2√2
=>(cosA+cosC)=-2√2cosAcosC
=>2cos(A-C)/2cos(A+C)/2=-√2[cos(A+C)+cos(A-C)]
=>cos(A-C)/2=-√2[-1/2+cos(A-C)]
=>cos(A-C)/2=-√2[-1/2+2cos²(A-C)/2-1]
=>4cos²(A-C)/2+√2cos(A-C)/2-3=0(|A-C|/2<π/3)
cos(A-C)/2=[-√2+√(2+48)]/8(负根舍去)
=√2/2
是这样的,好好看
得B=π/3
1/cosA+1/cosC=-2√2
=>(cosA+cosC)=-2√2cosAcosC
=>2cos(A-C)/2cos(A+C)/2=-√2[cos(A+C)+cos(A-C)]
=>cos(A-C)/2=-√2[-1/2+cos(A-C)]
=>cos(A-C)/2=-√2[-1/2+2cos²(A-C)/2-1]
=>4cos²(A-C)/2+√2cos(A-C)/2-3=0(|A-C|/2<π/3)
cos(A-C)/2=[-√2+√(2+48)]/8(负根舍去)
=√2/2
是这样的,好好看
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询