求下列隐函数的导数或偏导数 sin(xy)=x²y²+e^xy, 求dy/dx 10
展开全部
sin(xy)=x²y²+e^xy,
两边求导得到:
cos(xy)(ydx+xdy)=2xy^2dx+2x^2ydy+e^(xy)(ydx+xdy)
y[cos(xy)-e^(xy)]dx+x[cos(xy)-e^(xy)]dy=2xy^2dx+2x^2ydy
x[cos(xy)-e^(xy)-2xy]dy=y[2xy-cos(xy)+e^(xy)]dx
所以:
dy/dx=y[2xy-cos(xy)+e^(xy)]/{x[cos(xy)-e^(xy)-2xy]}.
两边求导得到:
cos(xy)(ydx+xdy)=2xy^2dx+2x^2ydy+e^(xy)(ydx+xdy)
y[cos(xy)-e^(xy)]dx+x[cos(xy)-e^(xy)]dy=2xy^2dx+2x^2ydy
x[cos(xy)-e^(xy)-2xy]dy=y[2xy-cos(xy)+e^(xy)]dx
所以:
dy/dx=y[2xy-cos(xy)+e^(xy)]/{x[cos(xy)-e^(xy)-2xy]}.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询