在三角形ABC中,AC=BC,角C=90°,将一块三角板的直角顶点放在斜边AB的中点P处,
在三角形ABC中,AC=BC,角C=90°,将一块三角板的直角顶点放在斜边AB的中点P处,将三角板绕P点旋转,三角形的两直角边分别交AC、CB于D.E两点。问PD与PE有...
在三角形ABC中,AC=BC,角C=90°,将一块三角板的直角顶点放在斜边AB的中点P处,将三角板绕P点旋转,三角形的两直角边分别交AC、CB于D.E两点。问PD与PE有何大小关系?在旋转过程中,还会存在与图一、二(即三角板到三角形的两直角边的距离相等)不同的情形吗?若有,以图二或图三为例证明,若不存在,以图二为例证明
展开
2个回答
展开全部
解:(1)连接PC.
∵△ABC是等腰直角三角形,P是AB的中点,
∴CP=PB,CP⊥AB,∠ACP=1/2 ∠ACB=45°.
∴∠ACP=∠B=45°.
又∵∠DPC+∠CPE=∠BPE+∠CPE=90°,
∴∠DPC=∠BPE.
∴△PCD≌△PBE.
∴PD=PE;
回答2012-08-14 10:47:09 老师:teacher041
(2)共有四种情况:
①当点C与点E重合,即CE=0时,PE=PB;
②CE=2-根2 ,此时PB=BE;
③当CE=1时,此时PE=BE;
④当E在CB的延长线上,且CE=2+根2 时,此时PB=EB;
∵△ABC是等腰直角三角形,P是AB的中点,
∴CP=PB,CP⊥AB,∠ACP=1/2 ∠ACB=45°.
∴∠ACP=∠B=45°.
又∵∠DPC+∠CPE=∠BPE+∠CPE=90°,
∴∠DPC=∠BPE.
∴△PCD≌△PBE.
∴PD=PE;
回答2012-08-14 10:47:09 老师:teacher041
(2)共有四种情况:
①当点C与点E重合,即CE=0时,PE=PB;
②CE=2-根2 ,此时PB=BE;
③当CE=1时,此时PE=BE;
④当E在CB的延长线上,且CE=2+根2 时,此时PB=EB;
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询