三重积分积分区域关于坐标轴不对称,被积函数为什么会化简

 我来答
匿名用户
2018-07-06
展开全部
当空间区域Ω关于坐标面(如:空间区域Ω关于yoz 坐标面)对称,被积函数关于另一个字母(如:被积函数关于z为奇函数)为奇函数,则三重积分为0。类似,还有两种情况。以这个题为例,第一个空间区域Ω关于yoz坐标面对称,第二个条件是被积函数xz是关于x的奇函数,所以三重积分∫∫∫xzdv=0;空间区域Ω关于xoz坐标面对称,被积函数xy是关于y的奇函数,所以三重积分∫∫∫xydv=0;空间区域Ω关于xoz坐标面对称,被积函数yz是关于y的奇函数,所以三重积分∫∫∫yzdv=0;所以,三重积分2∫∫∫(xy+yz+xz)dv=0
追问
本题的被积函数是x+y+z 但是图像是一个正方体左下角的一个点在原点上,是三重积分。为什么最后答案化简成了三倍的z
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式