一道高数题(高阶导数和泰勒公式相关)
3个回答
展开全部
y′=3x² sinx + x³cosx
y〃=6xsinx + 3x²cosx +3x²cosx -x³sinx=6xsinx + 6x²cosx -x³sinx
y(³)=6sinx +6xcosx+12xcosx-6x²sinx-3x²sinx-x³cosx=
6sinx +18xcosx-9x²sinx-x³cosx
y(4)=6cosx+18cosx-18xsinx-18xsinx-9x²cosx-3x²cosx+x³sinx=
24cosx-36xsinx-12x²cosx+x³sinx
含x³项
在第N次导.x³ * [(sinx)的n次导]
含x²项
在第N次导.x²* (3*n)* [(-cosx)的n次导]
含x¹项
在第N次导.x*[3n*(n-1)]* [(-sinx)的n次导]
含xº项
在第N次导.n*(n-1)(n-2)*[(cosx)的n次导]
y=x^3 sinx的n阶导数=x³ * [(sinx)的n次导]+x²* (3*n)* [(-cosx)的n次导]+x*[3n*(n-1)]* [(-sinx)的n次导]+n*(n-1)(n-2)*[(cosx)的n次导]
带入就好
y〃=6xsinx + 3x²cosx +3x²cosx -x³sinx=6xsinx + 6x²cosx -x³sinx
y(³)=6sinx +6xcosx+12xcosx-6x²sinx-3x²sinx-x³cosx=
6sinx +18xcosx-9x²sinx-x³cosx
y(4)=6cosx+18cosx-18xsinx-18xsinx-9x²cosx-3x²cosx+x³sinx=
24cosx-36xsinx-12x²cosx+x³sinx
含x³项
在第N次导.x³ * [(sinx)的n次导]
含x²项
在第N次导.x²* (3*n)* [(-cosx)的n次导]
含x¹项
在第N次导.x*[3n*(n-1)]* [(-sinx)的n次导]
含xº项
在第N次导.n*(n-1)(n-2)*[(cosx)的n次导]
y=x^3 sinx的n阶导数=x³ * [(sinx)的n次导]+x²* (3*n)* [(-cosx)的n次导]+x*[3n*(n-1)]* [(-sinx)的n次导]+n*(n-1)(n-2)*[(cosx)的n次导]
带入就好
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2018-11-24
展开全部
这是个偶函数,求奇数次导后是奇函数,在0 处连续必然为零
追问
如果不用奇偶性判断呢,就正常做呢
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |