求不定积分 ∫1/2+sinx dx
展开全部
作万能代换 tan(x/2) = u,则 x = 2arctanu,
dx = 2du/(1+u^2), sinx = 2u/(1+u)^2
I = ∫dx/(2+sinx) = ∫du/(1+u+u^2) = ∫d(1/2+u)/[3/4+(1/2+u)^2]
= (2/√3)arctan[(1+2u)/√3] + C
= (2/√3)arctan{[(1+2tan(x/2)]/√3} + C
dx = 2du/(1+u^2), sinx = 2u/(1+u)^2
I = ∫dx/(2+sinx) = ∫du/(1+u+u^2) = ∫d(1/2+u)/[3/4+(1/2+u)^2]
= (2/√3)arctan[(1+2u)/√3] + C
= (2/√3)arctan{[(1+2tan(x/2)]/√3} + C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询