这个高数题怎么做
1个回答
展开全部
x=cost,dx=-sintdt,x∈[-1,1],t∈[0,π],t=arccost, y'=dy/dx=dy/dt.dt/dx=y'(t)/x'(t)=-y'(t)/sint=-y'(t)csct; y''=dy'/dx=dy'/dt.dt/dx=-[y''(t)sint-y'(t)cost]/sin2t.(-csct) =[y''(t)sint-y'(t)cost]/sin3t =y''(t)csc2t-y'(t)cottcsc2t 代入:(1-cos2t)[y''(t)csc2t-y'(t)cottcsc2t]-cost[-y'(t)csct]+y(t)=0 sin2t[y''(t)csc2t-y'(t)cottcsc2t]-cost[-y'(t)csct]+y(t)=0 y''(t)-y'(t)cott+y'(t)cott+y(t)=0 y''(t)+y(t)=0 x=0,t=π/2 特征方程r2+1=0,r=±i,y(t)=C1cost+C2sint; y'(t)=-C1sint+C2cost y''(t)=-C1cost-C2sint y(π/2)=C2=1 y'(x)=y'(t)/(-sint)=-y'(t)/sint y'(0)x=-y'(π/2)/sin(π/2)=C1=2,C1=2 y=2cost+sint =2x+√(1-x2) x=0,y=1 y'=2+(1/2)(-2x)/√(1-x2) =2-x/√(1-x2) x=0,y'=2。 y''=-[√(1-x2)-x(1/2)(-2x)/√(1-x2)]/(1-x2) =-[(1-x2)+x2]/√(1-x2)3 =-/√(1-x2)3 (1-x2)y''-xy'+y =-(1-x2)/√(1-x2)3-x[2-x/√(1-x2)]+2x+√(1-x2) =-1/√(1-x2)-2x+x2/√(1-x2)+2x+√(1-x2) =-(1-x2)/√(1-x2)+√(1-x2) =-√(1-x2)+√(1-x2) =0 满足方程。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询