傅立叶级数展开构成的幅值谱具有哪些性质?
展开全部
请分清Fourier级数与Fourier变换之间的区别。
对于定义域为负无穷到正无穷的函数,只有周期函数才能展开成Fourier级数。Fourier级数可以看成是Fourier变换的一种离散的形式。对于定义域为负无穷到正无穷的非周期函数,其经过Fourier变换后频谱是连续谱,而只有周期函数其频谱才是离散谱,这相当于周期函数只是由可列个谐波叠加而成的,而不需要其它频率的正弦波。因此,当定义域是负无穷到正无穷的时候,只有周期函数才能展开成傅里叶级数的形式。
但是,通常我们研究的实际问题的定义域一般是有限长度的,对于这种问题,我们可以对其进行周期延拓,将有限长度上的函数延拓成定义域为负无穷到正无穷的周期函数。经过延拓之后的函数,是可以展开成Fourier级数的。
对于定义域为负无穷到正无穷的函数,只有周期函数才能展开成Fourier级数。Fourier级数可以看成是Fourier变换的一种离散的形式。对于定义域为负无穷到正无穷的非周期函数,其经过Fourier变换后频谱是连续谱,而只有周期函数其频谱才是离散谱,这相当于周期函数只是由可列个谐波叠加而成的,而不需要其它频率的正弦波。因此,当定义域是负无穷到正无穷的时候,只有周期函数才能展开成傅里叶级数的形式。
但是,通常我们研究的实际问题的定义域一般是有限长度的,对于这种问题,我们可以对其进行周期延拓,将有限长度上的函数延拓成定义域为负无穷到正无穷的周期函数。经过延拓之后的函数,是可以展开成Fourier级数的。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询