展开全部
因为
a为锐角,cos (a+兀/6)=4/5
所以
a+π/6是锐角
即a+π/6<π/4
a<π/12
sin(a+π/6)=√1-cos平方(a+π/6)=√1-(4/5)平方=√9/25=3/5
所以
1. sin (2a+兀/3)
=2sin(a+π/6)cos(a+π/6)
=2×3/5×4/5
=24/25
2.
2a+π/3<2×π/12+π/3=π/2
从而
cos(2a+π/3)=√1-sin平方(2a+兀/3)
=√1-(24/25)平方=7/25
所以
sin(2a+π/12)
=sin(2a+π/3-π/4)
=sin(2a+π/3)cosπ/4-cos(2a+π/3)sinπ/4
=24/25×√2/2-7/25×√2/2
=(24-7)/25×√2/2
=17√2 /50
a为锐角,cos (a+兀/6)=4/5
所以
a+π/6是锐角
即a+π/6<π/4
a<π/12
sin(a+π/6)=√1-cos平方(a+π/6)=√1-(4/5)平方=√9/25=3/5
所以
1. sin (2a+兀/3)
=2sin(a+π/6)cos(a+π/6)
=2×3/5×4/5
=24/25
2.
2a+π/3<2×π/12+π/3=π/2
从而
cos(2a+π/3)=√1-sin平方(2a+兀/3)
=√1-(24/25)平方=7/25
所以
sin(2a+π/12)
=sin(2a+π/3-π/4)
=sin(2a+π/3)cosπ/4-cos(2a+π/3)sinπ/4
=24/25×√2/2-7/25×√2/2
=(24-7)/25×√2/2
=17√2 /50
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询