1/(sinx+2)的不定积分如何求

 我来答
校爱景兆词
2019-11-02 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.3万
采纳率:31%
帮助的人:747万
展开全部
1/(sinx+2)
=(1/2)/(0.5*sinx+1)dx
=1/(sin(x/2)cos(x/2)+1)d(x/2)
令t=x/2
原式=(1/sint*cost+1)dt
分子分母都除以(cost)^2
=(1/(cost)^2)/{[1/(cost)^2]+tant})dt
=1/{[1/(cost)^2]+tant}d(tant)
=[1/(1+(tantt)^2)+tant]d(tant)
令u=tant
={1/(1+u^2)+u}du
=1/[(0.5+u)^2+0.75]du
=[2/3^(1/2)]arctant[(2/3^(1/2))(u+1/2)]+c
=[2/3^(1/2)]arctant[(2/3^(1/2))(tant+1/2)]+c
=[2/3^(1/2)]arctant[(2/3^(1/2))(tant(x/2)+1/2)]+c
我已经验证过了,答案是正确的,不信你可以自己试一下
北京埃德思远电气技术咨询有限公司
2023-08-25 广告
"整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算... 点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式