一道数学题:如果x,y>0 且x+2y=3,则1/x+1/y的最小值为多少
1个回答
展开全部
题目:x、y>0,且x+2y=3,则1/x+1/y的最小值?
解:
1/x+1/y
=1/3*(3/x+3/y)
=1/3*[(x+2y)/x+(x+2y)/y]
=1/3*[(1+2y/x)+(x/y+2)]
=1/3*(3+2y/x+x/y)
≥1/3*[3+2√(2y/x*x/y)]
=1/3*(3+2√2)
=(3+2√2)/3
当且仅当2y/x=x/y,即x=-3+3√2,y=(6-3√2)/2时,1/x+1/y获得最小值为:(3+2√2)/3。
解:
1/x+1/y
=1/3*(3/x+3/y)
=1/3*[(x+2y)/x+(x+2y)/y]
=1/3*[(1+2y/x)+(x/y+2)]
=1/3*(3+2y/x+x/y)
≥1/3*[3+2√(2y/x*x/y)]
=1/3*(3+2√2)
=(3+2√2)/3
当且仅当2y/x=x/y,即x=-3+3√2,y=(6-3√2)/2时,1/x+1/y获得最小值为:(3+2√2)/3。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询