证明三角形任意两边之和大于第三边
2个回答
展开全部
三角形三边关系。
A,B两点的距离是线段AB。AC+CB是大于AB的(两点之间线段最短。)
由此可得:三角形的任意两边之和大于第三边。两点之间线段最短是一个公理。又名线段公理。
比如把纸上的两个点重合,把纸折叠起来,那两个点就重合了,距离无限近。
“三角形两边之和大于第三边”为其引申内容,不能使用它来证明“两点之间线段最短”。
A,B两点的距离是线段AB。AC+CB是大于AB的(两点之间线段最短。)
由此可得:三角形的任意两边之和大于第三边。两点之间线段最短是一个公理。又名线段公理。
比如把纸上的两个点重合,把纸折叠起来,那两个点就重合了,距离无限近。
“三角形两边之和大于第三边”为其引申内容,不能使用它来证明“两点之间线段最短”。
展开全部
证明:
假设构成三角形的三条边分别为:a、b、c,且a、b、c大小任意;
证明:a+b>c;
因为a、b、c都为正数,所以要使得a+b>c成立,只需证明(a+b)²>c²,即:
(a+b)²-c²>0;
根据余弦定理:cosC=(a²+b²-c²)/2ab=((a+b)²-c²-2ab)/2ab;
移项得:(a+b)²-c²=2ab(2+cosB);
对于等式的右边:cosB在角B取值范围内的值为(-1,1);
所以1<(2+cosB)<2;
又因为a、b都是正数;
所以2ab(2+cosB)>0,即(a+b)²-c²>0,即a+b>c;
综上所述,证得:三角形的任意两边之和大于第三边
假设构成三角形的三条边分别为:a、b、c,且a、b、c大小任意;
证明:a+b>c;
因为a、b、c都为正数,所以要使得a+b>c成立,只需证明(a+b)²>c²,即:
(a+b)²-c²>0;
根据余弦定理:cosC=(a²+b²-c²)/2ab=((a+b)²-c²-2ab)/2ab;
移项得:(a+b)²-c²=2ab(2+cosB);
对于等式的右边:cosB在角B取值范围内的值为(-1,1);
所以1<(2+cosB)<2;
又因为a、b都是正数;
所以2ab(2+cosB)>0,即(a+b)²-c²>0,即a+b>c;
综上所述,证得:三角形的任意两边之和大于第三边
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询