初二数学(不等式组的应用题)
1、某公司经营甲、乙两种商品,每件甲种商品进价12万元,售价14.5万元;每件乙种商品进价8万元,售价10万元,且它们的进价和售价始终不变。现准备购进甲、乙两种商品共20...
1、某公司经营甲、乙两种商品,每件甲种商品进价12万元,售价14.5万元;每件乙种商品进价8万元,售价10万元,且它们的进价和售价始终不变。现准备购进甲、乙两种商品共20件,所用资金不低于190万元,不高于200万元。 (1)该公司有哪几种进货方案? (2)该公司采用哪种进货方案可获得最大利润》最大利润是多少? (3)若用(2)中所求得的利润再次进货,请直接写出获得最大利润的进货方案. 急需!!要解设、过程. 好的我会追加分的!!!
展开
1个回答
展开全部
解:(1)设进甲商品x,乙商品y,则有
x+y=20
(1)
190≤12x+8y≤200
(2)
由(1)式得y=20-x将其代入(2)得7.5≤x≤10,所以x的整数解有x=8,9,10
因此相应的y=12,11,10
有三种进货方案:甲进8件乙进12件;甲进9件乙进11件;甲进10件乙进10件
(2)设获得利润为z,则有
z1=(14.5-12)*8+(10-8)*12=44
z2=(14.5-12)*9+(10-8)*11=44.5
z3=(14.5-12)*10+(10-8)*10=45
所以按甲进10件乙进10件这种方案可获最大利润45万元
(3)甲进3件,乙进1件
x+y=20
(1)
190≤12x+8y≤200
(2)
由(1)式得y=20-x将其代入(2)得7.5≤x≤10,所以x的整数解有x=8,9,10
因此相应的y=12,11,10
有三种进货方案:甲进8件乙进12件;甲进9件乙进11件;甲进10件乙进10件
(2)设获得利润为z,则有
z1=(14.5-12)*8+(10-8)*12=44
z2=(14.5-12)*9+(10-8)*11=44.5
z3=(14.5-12)*10+(10-8)*10=45
所以按甲进10件乙进10件这种方案可获最大利润45万元
(3)甲进3件,乙进1件
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询