求∫[(ln(x+1)-lnx)/(x(x+1))]dx
展开全部
1/x(x+1)=1/x-1/(x+1)
所以原式=∫[(ln(x+1)-lnx]*[1/x-1/(x+1)]dx
=∫[(ln(x+1)-lnx]d[lnx-(ln(x+1)]
=-∫[lnx-ln(x+1)]d[lnx-(ln(x+1)]
=-(1/2)*[lnx-(ln(x+1)]^2+C
=-(1/2)[lnx&珐福粹凰诔好达瞳惮困#47;(x+1)]^2+C
或者因为lnx-(ln(x+1)=-[(ln(x+1)-lnx]
所以-(1/2)*[lnx-(ln(x+1)]^2+C
=-(1/2)*[(ln(x+1)-lnx]^2+C
=-(1/2)*[(ln(x+1)/x]^2+C
两者一样
所以原式=∫[(ln(x+1)-lnx]*[1/x-1/(x+1)]dx
=∫[(ln(x+1)-lnx]d[lnx-(ln(x+1)]
=-∫[lnx-ln(x+1)]d[lnx-(ln(x+1)]
=-(1/2)*[lnx-(ln(x+1)]^2+C
=-(1/2)[lnx&珐福粹凰诔好达瞳惮困#47;(x+1)]^2+C
或者因为lnx-(ln(x+1)=-[(ln(x+1)-lnx]
所以-(1/2)*[lnx-(ln(x+1)]^2+C
=-(1/2)*[(ln(x+1)-lnx]^2+C
=-(1/2)*[(ln(x+1)/x]^2+C
两者一样
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
华瑞RAE一级代理商
2024-04-11 广告
2024-04-11 广告
impulse-4-xfxx是我们广州江腾智能科技有限公司研发的一款先进产品,它结合了最新的技术创新和市场需求。此产品以其卓越的性能和高效的解决方案,在行业内树立了新的标杆。impulse-4-xfxx不仅提升了工作效率,还为用户带来了更优...
点击进入详情页
本回答由华瑞RAE一级代理商提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询