数学一道题
2个回答
展开全部
S = x + 3x^2 + 5x^3 + 7x^5 + …… + (2n - 1)*x^n
这个公式两边同乘以 x,可以得到:
xS = x^2 + 3x^3 + 5x^5 + …… + (2n - 3)*x^n + (2n - 1)*x^(n+1)
这两个公式左、右两边分别相减,可以得到:
(1 - x)*S = x + 2x^2 + 2x^3 + 2x^5 + …… + 2x^n - (2n - 1) * x^(n+1)
= 2*(x + x^2 + x^3 + x^5 + …… + x^n) - x - (2n - 1) * x^(n+1)
= 2x * (x^n - 1)/(x-1) - x - (2n -1) * x^(n+1)
=[2x^(n+1) - 2x - x^2 + x - (2n-1) * x^(n+2) + (2n -1) * x^(n+1)]/(x-1)
=[-(2n-1)*x^(n+2) + (2n+1)*x^(n+1) - x^2 - x]/(x-1)
所以,
S = [(2n-1)*x^(n+2) - (2n+1)*x^(n+1) + x^2 + x]/(x-1)^2
这个公式两边同乘以 x,可以得到:
xS = x^2 + 3x^3 + 5x^5 + …… + (2n - 3)*x^n + (2n - 1)*x^(n+1)
这两个公式左、右两边分别相减,可以得到:
(1 - x)*S = x + 2x^2 + 2x^3 + 2x^5 + …… + 2x^n - (2n - 1) * x^(n+1)
= 2*(x + x^2 + x^3 + x^5 + …… + x^n) - x - (2n - 1) * x^(n+1)
= 2x * (x^n - 1)/(x-1) - x - (2n -1) * x^(n+1)
=[2x^(n+1) - 2x - x^2 + x - (2n-1) * x^(n+2) + (2n -1) * x^(n+1)]/(x-1)
=[-(2n-1)*x^(n+2) + (2n+1)*x^(n+1) - x^2 - x]/(x-1)
所以,
S = [(2n-1)*x^(n+2) - (2n+1)*x^(n+1) + x^2 + x]/(x-1)^2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询