arctanx/x²(1+x²)的原函数
1个回答
展开全部
arctan(x)/(x²(1+x²)) = arctan(x)/x²-arctan(x)/(1+x²),两项分别计算.
前者分部积分化为 -arctan(x)/x+∫1/(x(1+x²)) dx
= -arctan(x)/x+1/2·∫(1/x²-1/(1+x²))d(x²)
= -arctan(x)/x+1/2·∫1/x² d(x²)-1/2·∫1/(1+x²) d(1+x²)
= -arctan(x)/x+1/2·ln(x²)-1/2·ln(1+x²).
后者∫ arctan(x)/(1+x²) dx = ∫ arctan(x) d(arctan(x)) = arctan(x)²/2.
前者分部积分化为 -arctan(x)/x+∫1/(x(1+x²)) dx
= -arctan(x)/x+1/2·∫(1/x²-1/(1+x²))d(x²)
= -arctan(x)/x+1/2·∫1/x² d(x²)-1/2·∫1/(1+x²) d(1+x²)
= -arctan(x)/x+1/2·ln(x²)-1/2·ln(1+x²).
后者∫ arctan(x)/(1+x²) dx = ∫ arctan(x) d(arctan(x)) = arctan(x)²/2.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询