如图,在△ABC中,∠ACB=90°,将△ABC绕点A逆时针旋转,使得AC落在AB边上,得△AED,连接EC、BD,求证:
如图,在△ABC中,∠ACB=90°,将△ABC绕点A逆时针旋转,使得AC落在AB边上,得△AED,连接EC、BD,求证:∠BCE=∠BDE....
如图,在△ABC中,∠ACB=90°,将△ABC绕点A逆时针旋转,使得AC落在AB边上,得△AED,连接EC、BD,求证:∠BCE=∠BDE.
展开
1个回答
展开全部
证明:∵在△ABC中,∠ACB=90°,将△ABC绕点A逆时针旋转,使得AC落在AB边上,得△AED,
∴AC=AE,AB=AD,
∴∠ACE=∠AEC,∠ADB=∠ABD,∠ABC=∠ADE,
∵∠ACB=90°,
∴∠AXE+∠BCE
=∠AEC+∠BCE
=∠ABC+∠BCE+∠BCE
=90°①,
∵∠AED=∠ACB=90°,∠AED=∠ABD+∠BDE,
∴∠ABD+∠BDE
=∠ADB+∠BDE
=∠ADE+∠BDE+∠BDE
=∠ABC+∠BDE+∠BDE
=90°②,
由①②得:∠ABC+2∠BCE=∠ABC+2∠BDE=90°,
∴∠BCE=∠BDE.
∴AC=AE,AB=AD,
∴∠ACE=∠AEC,∠ADB=∠ABD,∠ABC=∠ADE,
∵∠ACB=90°,
∴∠AXE+∠BCE
=∠AEC+∠BCE
=∠ABC+∠BCE+∠BCE
=90°①,
∵∠AED=∠ACB=90°,∠AED=∠ABD+∠BDE,
∴∠ABD+∠BDE
=∠ADB+∠BDE
=∠ADE+∠BDE+∠BDE
=∠ABC+∠BDE+∠BDE
=90°②,
由①②得:∠ABC+2∠BCE=∠ABC+2∠BDE=90°,
∴∠BCE=∠BDE.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询