设数列{an}是首项为1公比为3的等比数列,把{an}中的每一项都减去2后,得到一个新数列{bn},{bn}的前n项和

设数列{an}是首项为1公比为3的等比数列,把{an}中的每一项都减去2后,得到一个新数列{bn},{bn}的前n项和为Sn,对任意的n∈N*,下列结论正确的是()A.b... 设数列{an}是首项为1公比为3的等比数列,把{an}中的每一项都减去2后,得到一个新数列{bn},{bn}的前n项和为Sn,对任意的n∈N*,下列结论正确的是(  )A.bn+1=3bn,且Sn=12(3n-1)B.bn+1=3bn-2,且Sn=12(3n-1)C.bn+1=3bn+4,且Sn=12(3n-1)-2nD.bn+1=3bn-4,且Sn=12(3n-1)-2n 展开
 我来答
手机用户40643
推荐于2016-04-02 · TA获得超过157个赞
知道答主
回答量:183
采纳率:75%
帮助的人:64.4万
展开全部
因为数列{an}是首项为1公比为3的等比数列,所以数列{an}的通项公式
an=3n-1,则依题意得,数列{bn}的通项公式为bn=3n-1-2,∴bn+1=3n-2,3bn=3(3n-1-2)=3n-6,
∴bn+1=3bn+4.{bn}的前n项和为:
Sn=(1-2)+(31-2)+(32-2)+(33-2)++(3n-1-2)=(1+31+32+33++3n-1)-2n=
(1?3n)
1?3
-2n
=
1
2
(3n-1)-2n.
故选C.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式