已知数列{an}满足a1=0,an+1=1+an(n∈N*),数列{bn}的前n项和为Sn,且数列34S1+1,34S2+1,34S3+1,…34
已知数列{an}满足a1=0,an+1=1+an(n∈N*),数列{bn}的前n项和为Sn,且数列34S1+1,34S2+1,34S3+1,…34Sn+1…是首项和公比都...
已知数列{an}满足a1=0,an+1=1+an(n∈N*),数列{bn}的前n项和为Sn,且数列34S1+1,34S2+1,34S3+1,…34Sn+1…是首项和公比都为4的等比数列.(Ⅰ)求数列{an}、{bn}的通项公式;(Ⅱ)设数列{an}的前n项和为Tn,求1T2+1T3+1T4+…+1Tn的值.
展开
夏轩vpDi
推荐于2016-08-12
·
超过60用户采纳过TA的回答
关注
(Ⅰ)由题意知:a
n+1-a
n=1,n∈N
*,满足a
1=0,
∴数列{a
n}是以0为首项,公差等于1的等差数列,
∴a
n=a
1+(n-1)d=n-1;
又由题意可得:
Sn+1=4×4n?1=4
n,
∴S
n=
(4n?1);
(1)当n=1时,
b1=S1=(4?1)=4,
(2)当n≥2时,b
n=S
n-S
n-1=
(4n?1)?(4n?1?1)=4
n,
检验n=1时也符合,∴
bn=4n;
(Ⅱ)由(Ⅰ)知:
Tn==
,
∴当n≥2时,
=
=
2(?),
∴
+
++…+
=
2(1?)+2(
?)+…+2(
+)=2-
.
收起
为你推荐: