数学分式的计算
2个回答
展开全部
(1)
=(x-1)/(x^2-1)+1/(x^2-1)-(x+1)/(x^2-1)
=[x-1+1-(x+1)]/(x^2-1)
=-1/(x^2-1)
(2)
=√(8x/16)-√(2x/16)
=1/4[2√(2x)-√(2x)]
=1/4√(2x)
(3)分母有理化
=(√2-1)/[(√2+1)(√2-1)]+(√3-√2)/[(√3+√2)(√3-√2)]+
(2-√3)/[(2+√3)(2-√3)]+...+(10-√99)/[(10+√99)(10-√99)]
=(√2-1)+(√3-√2)+(2-√3)+...+(10-√99)
=-1+10
=9
=(x-1)/(x^2-1)+1/(x^2-1)-(x+1)/(x^2-1)
=[x-1+1-(x+1)]/(x^2-1)
=-1/(x^2-1)
(2)
=√(8x/16)-√(2x/16)
=1/4[2√(2x)-√(2x)]
=1/4√(2x)
(3)分母有理化
=(√2-1)/[(√2+1)(√2-1)]+(√3-√2)/[(√3+√2)(√3-√2)]+
(2-√3)/[(2+√3)(2-√3)]+...+(10-√99)/[(10+√99)(10-√99)]
=(√2-1)+(√3-√2)+(2-√3)+...+(10-√99)
=-1+10
=9
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询