如图,PA、PB是⊙O的切线,切点为A、B,C是⊙O上的一点,已知∠APB=76°,则∠ACB=______

如图,PA、PB是⊙O的切线,切点为A、B,C是⊙O上的一点,已知∠APB=76°,则∠ACB=______.... 如图,PA、PB是⊙O的切线,切点为A、B,C是⊙O上的一点,已知∠APB=76°,则∠ACB=______. 展开
 我来答
善沛荣5008
推荐于2016-08-12 · 超过77用户采纳过TA的回答
知道答主
回答量:144
采纳率:77%
帮助的人:61.2万
展开全部

连接OB、OA、
∵PA、PB是⊙O的切线,切点为A、B,
∴∠PBO=∠PAO=90°,
∵∠APB=76°,
∴∠AOB=360°-∠PBO-∠PAO-∠APB=104°,
∴由圆周角定理得:∠ACB=
1
2
∠AOB=
1
2
×104°=52°,
故答案为:52°.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式