设函数f(x)=log4(4x+1)+ax(a∈R)(Ⅰ)若函数f(x)是定义在R上的偶函数,求a的值;(Ⅱ)若不等式f(
设函数f(x)=log4(4x+1)+ax(a∈R)(Ⅰ)若函数f(x)是定义在R上的偶函数,求a的值;(Ⅱ)若不等式f(x)+f(-x)≥mt+m对任意x∈R,t∈[-...
设函数f(x)=log4(4x+1)+ax(a∈R)(Ⅰ)若函数f(x)是定义在R上的偶函数,求a的值;(Ⅱ)若不等式f(x)+f(-x)≥mt+m对任意x∈R,t∈[-2,1]恒成立,求实数m的取值范围.
展开
展开全部
(Ⅰ)由函数f(x)是定义在R上的偶函数,得f(x)=f(-x)恒成立,
则log4(4x+1)+ax=log4(4?x+1)?ax,
∴2ax=log4
=log4
=?x,
∴(2a+1)x=0恒成立,则2a+1=0,故a=?
.
(Ⅱ)f(x)+f(?x)=log4(4x+1)+ax+log4(4?x+1)?ax=log4(4x+1)+log4(4?x+1)
=log4(4x+1)(4?x+1)=log4(2+4x+4?x)≥log4(2+2
)=1.
当且仅当x=0时取等号,
∴mt+m≤1对任意t∈[-2,1]恒成立,
令h(t)=mt+m,
由
,解得?1≤m≤
,
故实数m的取值范围是[?1,
].
则log4(4x+1)+ax=log4(4?x+1)?ax,
∴2ax=log4
4?x+1 |
4x+1 |
1 |
4x |
∴(2a+1)x=0恒成立,则2a+1=0,故a=?
1 |
2 |
(Ⅱ)f(x)+f(?x)=log4(4x+1)+ax+log4(4?x+1)?ax=log4(4x+1)+log4(4?x+1)
=log4(4x+1)(4?x+1)=log4(2+4x+4?x)≥log4(2+2
4x×4?x |
当且仅当x=0时取等号,
∴mt+m≤1对任意t∈[-2,1]恒成立,
令h(t)=mt+m,
由
|
1 |
2 |
故实数m的取值范围是[?1,
1 |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询