(2010?河北)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=6,BC=8,AB=33,点M是BC的中点.点P从点M
(2010?河北)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=6,BC=8,AB=33,点M是BC的中点.点P从点M出发沿MB以每秒1个单位长的速度向点B...
(2010?河北)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=6,BC=8,AB=33,点M是BC的中点.点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动.在点P,Q的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧.点P,Q同时出发,当点P返回到点M时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).(1)设PQ的长为y,在点P从点M向点B运动的过程中,写出y与t之间的函数关系式(不必写t的取值范围);(2)当BP=1时,求△EPQ与梯形ABCD重叠部分的面积;(3)随着时间t的变化,线段AD会有一部分被△EPQ覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接写出t的取值范围;若不能,请说明理由.
展开
1个回答
展开全部
解:(1)y=MP+MQ=2t;
(2)当BP=1时,有两种情形:
①如图1,若点P从点M向点B运动,有MB=
BC=4,MP=MQ=3,
∴PQ=6.连接EM,
∵△EPQ是等边三角形,∴EM⊥PQ.∴EM=3
.
∵AB=3
,∴点E在AD上.
∴△EPQ与梯形ABCD重叠部分就是△EPQ,其面积为9
.
②若点P从点B向点M运动,由题意得t=5.
PQ=BM+MQ-BP=8,PC=7.
设PE与AD交于点F,QE与AD或AD的延长线交于点G,
过点P作PH⊥AD于点H,
则HP=3
,AH=1.
在Rt△HPF中,∠HPF=30°,
∴HF=3,PF=6.∴FG=FE=2.又∵FD=2,
∴点G与点D重合,如图2.
此时△EPQ与梯形ABCD的重叠部分就是梯形FPCG,其面积为
.
(3)能,
此时,4≤t≤5.
过程如下:
如图,当t=4时,P点与B点重合,Q点运动到C点,
此时被覆盖线段的长度达到最大值,
∵△PEQ为等边三角形,
∴∠EPC=60°,
∴∠APE=30°,
∵AB=3
,
∴AF=3,BF=6,
∴EF=FG=2,
∴GD=6-2-3=1,
所以Q向右还可运动1秒,FG的长度不变,
∴4≤t≤5.
(2)当BP=1时,有两种情形:
①如图1,若点P从点M向点B运动,有MB=
1 |
2 |
∴PQ=6.连接EM,
∵△EPQ是等边三角形,∴EM⊥PQ.∴EM=3
3 |
∵AB=3
3 |
∴△EPQ与梯形ABCD重叠部分就是△EPQ,其面积为9
3 |
②若点P从点B向点M运动,由题意得t=5.
PQ=BM+MQ-BP=8,PC=7.
设PE与AD交于点F,QE与AD或AD的延长线交于点G,
过点P作PH⊥AD于点H,
则HP=3
3 |
在Rt△HPF中,∠HPF=30°,
∴HF=3,PF=6.∴FG=FE=2.又∵FD=2,
∴点G与点D重合,如图2.
此时△EPQ与梯形ABCD的重叠部分就是梯形FPCG,其面积为
27 |
2 |
3 |
(3)能,
此时,4≤t≤5.
过程如下:
如图,当t=4时,P点与B点重合,Q点运动到C点,
此时被覆盖线段的长度达到最大值,
∵△PEQ为等边三角形,
∴∠EPC=60°,
∴∠APE=30°,
∵AB=3
3 |
∴AF=3,BF=6,
∴EF=FG=2,
∴GD=6-2-3=1,
所以Q向右还可运动1秒,FG的长度不变,
∴4≤t≤5.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询