已知顶点为A(1,5)的抛物线y=ax2+bx+c经过点B(5,1).(1)求抛物线的解析式;(2)如图(1),设C,
已知顶点为A(1,5)的抛物线y=ax2+bx+c经过点B(5,1).(1)求抛物线的解析式;(2)如图(1),设C,D分别是x轴、y轴上的两个动点,求四边形ABCD的最...
已知顶点为A(1,5)的抛物线y=ax2+bx+c经过点B(5,1).(1)求抛物线的解析式;(2)如图(1),设C,D分别是x轴、y轴上的两个动点,求四边形ABCD的最小周长;(3)在(2)中,当四边形ABCD的周长最小时,作直线CD.设点P(x,y)(x>0)是直线y=x上的一个动点,Q是OP的中点,以PQ为斜边按图(2)所示构造等腰直角三角形PQR.①当△PQR与直线CD有公共点时,求x的取值范围;②在①的条件下,记△PQR与△COD的公共部分的面积为S.求S关于x的函数关系式,并求S的最大值.
展开
展开全部
(1)∵抛物线的顶点为A(1,5),
∴设抛物线的解析式为y=a(x-1)2+5,
将点B(5,1)代入,得a(5-1)2+5=1,
解得a=-
,
∴y=-
x2+
x+
;
(2)可以过y,x轴分别做A,B的对称点A′,B′,然后连A′D,B′C,
显然A′(-1,5),B′(5,-1),连接A′B′分别交x轴、y轴于点C、D两点,
∵DA=DA′,CB=CB′,
∴此时四边形ABCD的周长最小,最小值就是A′B′+AB,
而A′B′=
=6
,
AB=
=4
,
∴A′B′+AB=10
,
四边形ABCD的最小周长为10
;
(3)①点B关于x轴的对称点B′(5,-1),点A关于y轴的对称点A′(-1,5),连接A′B′,与x轴,y轴交于C,D点,
∴CD的解析式为:y=-x+4,
联立
,
得:
,
∵点P在y=x上,点Q是OP的中点,
∴要使等腰直角三角形与直线CD有公共点,则2≤x≤4.
故x的取值范围是:2≤x≤4.
②如图:
点E(2,2),当EP=EQ时,x-2=2-
x,得:x=
,
当2≤x≤
时,S=
PR?RQ-
EP2=
(x-
x)?(x-
x)-
?
(x-2)?
(x-2),
S=-
x2+4x-4,
当x=
时,S最大=
.
当
≤x≤4时,S=
EQ2=
?
(2-
x)?
(2-
x),
S=
(x-4)2,
当x=
∴设抛物线的解析式为y=a(x-1)2+5,
将点B(5,1)代入,得a(5-1)2+5=1,
解得a=-
1 |
4 |
∴y=-
1 |
4 |
1 |
2 |
19 |
4 |
(2)可以过y,x轴分别做A,B的对称点A′,B′,然后连A′D,B′C,
显然A′(-1,5),B′(5,-1),连接A′B′分别交x轴、y轴于点C、D两点,
∵DA=DA′,CB=CB′,
∴此时四边形ABCD的周长最小,最小值就是A′B′+AB,
而A′B′=
(5+1) 2+(1+5) 2 |
2 |
AB=
(5?1) 2+(1?5) 2 |
2 |
∴A′B′+AB=10
2 |
四边形ABCD的最小周长为10
2 |
(3)①点B关于x轴的对称点B′(5,-1),点A关于y轴的对称点A′(-1,5),连接A′B′,与x轴,y轴交于C,D点,
∴CD的解析式为:y=-x+4,
联立
|
得:
|
∵点P在y=x上,点Q是OP的中点,
∴要使等腰直角三角形与直线CD有公共点,则2≤x≤4.
故x的取值范围是:2≤x≤4.
②如图:
点E(2,2),当EP=EQ时,x-2=2-
1 |
2 |
8 |
3 |
当2≤x≤
8 |
3 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
2 |
2 |
S=-
7 |
8 |
当x=
16 |
7 |
4 |
7 |
当
8 |
3 |
1 |
2 |
1 |
2 |
2 |
1 |
2 |
2 |
1 |
2 |
S=
1 |
4 |
当x=
8 |
3 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载