已知函数f(x)=x2+2x+alnx,a∈R. 若对任意t≥1,有f(2t-1)≥f(t)-3,
已知函数f(x)=x2+2x+alnx,a∈R.若对任意t≥1,有f(2t-1)≥f(t)-3,求a的取值范围....
已知函数f(x)=x2+2x+alnx,a∈R.
若对任意t≥1,有f(2t-1)≥f(t)-3,求a的取值范围. 展开
若对任意t≥1,有f(2t-1)≥f(t)-3,求a的取值范围. 展开
1个回答
展开全部
f(x)=x^2+2x+alnx,a∈R,
对任意t≥1,有f(2t-1)≥f(t)-3,
<==>(2t-1)^2+2(2t-1)+aln(2t-1)>=t^2+2t+alnt,
<==>a[ln(2t-1)-lnt]>=-3t^2+2t+1,①
t=1时2t-1=1,①成立;
t>1时2t-1>t,ln(2t-1)-lnt>0,
①<==>a>=(-3t^2+2t+1)/[ln(2t-1)-lnt],记为g(t),
g'(t)={(-6t+2)[ln(2t-1)-lnt]-(-3t^2+2t+1)[2/(2t-1)-1/t]}/[ln(2t-1)-lnt]^2
={(-6t+2)[ln(2t-1)-lnt]+(-3t^2+2t+1)/[t(2t-1)]}/[ln(2t-1)-lnt]^2<0,
∴g(t)是减函数,
x→1+时,g(t)→(-6t+2)/[2/(2t-1)-1/t]→-4,
∴a>=-4,为所求.
对任意t≥1,有f(2t-1)≥f(t)-3,
<==>(2t-1)^2+2(2t-1)+aln(2t-1)>=t^2+2t+alnt,
<==>a[ln(2t-1)-lnt]>=-3t^2+2t+1,①
t=1时2t-1=1,①成立;
t>1时2t-1>t,ln(2t-1)-lnt>0,
①<==>a>=(-3t^2+2t+1)/[ln(2t-1)-lnt],记为g(t),
g'(t)={(-6t+2)[ln(2t-1)-lnt]-(-3t^2+2t+1)[2/(2t-1)-1/t]}/[ln(2t-1)-lnt]^2
={(-6t+2)[ln(2t-1)-lnt]+(-3t^2+2t+1)/[t(2t-1)]}/[ln(2t-1)-lnt]^2<0,
∴g(t)是减函数,
x→1+时,g(t)→(-6t+2)/[2/(2t-1)-1/t]→-4,
∴a>=-4,为所求.
更多追问追答
追问
能不能写在一张纸上,有点看不懂,拜托拜托了
追答
我不会截图,您哪里看不懂?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询