点到直线的距离公式是什么?

 我来答
匿名用户
2022-08-27
展开全部

点到直线的距离公式是:

设直线 L 的方程为Ax+By+C=0,点 P 的坐标为(x0,y0),则点 P 到直线 L 的距离为:

同理可知,当P(x0,y0),直线L的解析式为y=kx+b时,则点P到直线L的距离为:

考虑点(x0,y0,z0)与空间直线x-x1/l=y-y1/m=z-z1/n,有d=|(x1-x0,y1-y0,z1-z0)×(l,m,n)|/√(l²+m²+n²)。
证明方法:
定义法证:根据定义,点P(x₀,y₀)到直线l:Ax+By+C=0的距离是点P到直线l的垂线段的长,设点P到直线的垂线为l',垂足为Q,则l'的斜率为B/A则l'的解析式为y-y₀=(B/A)(x-x₀)把l和l'联立得l与l'的交点Q的坐标为((B^2x₀-ABy₀-AC)/(A^2+B^2), (A^2y₀-ABx₀-BC)/(A^2+B^2))由两点间距离公式得:
PQ^2=[(B^2x₀-ABy₀-AC)/(A^2+B^2)-x0]^2
+[(A^2y₀-ABx₀-BC)/(A^2+B^2)-y0]^2
=[(-A^2x₀-ABy₀-AC)/(A^2+B^2)]^2
+[(-ABx₀-B^2y₀-BC)/(A^2+B^2)]^2
=[A(-By₀-C-Ax₀)/(A^2+B^2)]^2
+[B(-Ax₀-C-By₀)/(A^2+B^2)]^2
=A^2(Ax₀+By₀+C)^2/(A^2+B^2)^2
+B^2(Ax₀+By₀+C)^2/(A^2+B^2)^2
=(A^2+B^2)(Ax₀+By₀+C)^2/(A^2+B^2)^2
=(Ax₀+By₀+C)^2/(A^2+B^2)
所以PQ=|Ax+By+C|/√(A^2+B^2),公式得证。
扩展资料:
公式整理
一、总公式:
设直线 L 的方程为Ax+By+C=0,点 P 的坐标为(Xo,Yo),则点 P 到直线 L 的距离为:

考虑点(x0,y0,z0)与空间直线x-x1/l=y-y1/m=z-z1/n,有s=|(x1-x0,y1-y0,z1-z0)×(l,m,n)|/√(l²+m²+n²)
d=√((x1-x0)²+(y1-y0)²+(z1-z0)²-s²)
二、引申公式:
公式①:设直线l1的方程为Ax+By+C1=0;直线l2的方程为Ax+By+C2=0
则 2条平行线之间的间距:


公式②:设直线l1的方程为A1x+B1y+C1=0;直线l2的方程为A2x+B2y+C2=0
则 2条直线的夹角

阿鑫聊生活
高粉答主

2022-08-26 · 生活知识分享小达人,专注于讲解生活知识。
阿鑫聊生活
采纳数:1217 获赞数:235059

向TA提问 私信TA
展开全部

Ax+By+C=0坐标(Xo,Yo),那么这点到这直线的距离就为:│AXo+BYo+C│/√(A²+B²)。

点到直线的距离公式

直线Ax+By+C=0 坐标(Xo,Yo)那么这点到这直线的距离就为:

d=│AXo+BYo+C│/√(A²+B²)

公式描述:

公式中的直线方程为Ax+By+C=0,点P的坐标为(x0,y0)。

连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度,叫做点到直线的距离。

扩展资料:

空间点到直线距离

点M(1,2,3)到直线{x+y-z=1,2x+z=3}的距离是____?

由两平面可得z=3-2x,y=4-3x。因此直线方程为:x/(-1)=(y-4)/3=(z-3)/2,

直线的方向向量为(-1,3,2) 。可设直线上一点N(-t,3t+4,2t+3),MN向量为(-t-1,3t+2,2t)

若MN垂直于直线,则(-1,3,2)*(-t-1,3t+2,2t)=0。可解得t=-1/2

MN的模长sqr(6)/2即为所求。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式