琴生不等式的证明

 我来答
11111111jjj22
2015-12-25 · TA获得超过407个赞
知道小有建树答主
回答量:97
采纳率:100%
帮助的人:30.6万
展开全部
琴生不等式以丹麦技术大学数学家约翰•延森(Johan Jensen)命名。它给出积分的凸函数值和凸函数的积分值间的关系。琴生(Jensen)不等式(也称为詹森不等式),使用时注意前提、等号成立条件。琴生不等式可以用测度论或概率论的语言给出。这两种方式都表明同一个很一般的结果。函数换作实值随机变量(就纯数学而言,两者没有分别)。在空间上,任何函数相对于概率测度的积分就成了期望值。至于这个证明,只要使用f(x)的泰勒展开式,利用其二阶余项就可以证明。
首先我们对n是2的幂加以证明,用数学归纳法
  假设对于n=2^k琴生不等式成立,那么对于n=2^(k+1)
  (f(x1)+f(x2)+...+f(xn))/n
  =((f(x1)+f(x2)+...+f(x(n/2)))/(n/2)+(f(x(n/2+1))+...+f(xn))/(n/2))/2
  >=(f(((x1+x2+...+x(n/2))/(n/2))+f((x(n/2+1)+...+xn)/(n/2)))/2
  >=f(((((x1+x2+...+x(n/2))/(n/2)+(x(n/2+1)+...+xn)/(n/2)))/2)
  =f((x1+x2+...+xn)/n)
  所以对于所有2的幂,琴生不等式成立。
  现在对于一个普通的n,如果n不是2的幂,我们可以找到一个k,使得2^k>n
  然后我们设
  x(n+1)=x(n+2)=...=x(2^k)=(x1+x2+...+xn)/n
  代入2^k阶的琴生不等式结论,整理后就可以得到结论。
  现在看看如何使用琴生不等式证明平方平均不等式
  (x1^2+x2^2+...+xn^2)/n>=[(x1+x2+...+xn)/n]^2
  显然,我们可以查看函数f(x)=x^2
  由于
  (f(x1)+f(x2))/2=(x1^2+x2^2)/2=(2x1^2+2x2^2)/4>=(x1^2+x2^2+2x1x2+(x1-x2)^2)/4>=(x1^2+x2^2+2x1x2)/4=((x1+x2)/2)^2
  所以f(x)=x^2是凸函数
  所以我们可以得到,对于任意x1,x2,...,xn,
  有(f(x1)+f(x2)+...+f(xn))/n>=f((x1+x2+...+xn)/n)
  也就是n阶平方平均不等式。
  从上面证明过程我们知道通常情况用初等方法判断函数的凹凸性比较麻烦。
  不过如果利用数学分析我们可以有个非常方便的结论。
  如果f(x)二阶可导,而且f''(x)>=0,那么f(x)是凸函数
  如果f(x)二阶可导,而且f''(x)<=0,那么f(x)是凹函数
  至于这个证明,只要使用f(x)的泰勒展开式,利用其二阶余项就可以证明的。
滑方绪芳菲
2020-04-13 · TA获得超过1285个赞
知道小有建树答主
回答量:1881
采纳率:88%
帮助的人:11万
展开全部
只对凸函数加以证明.
首先我们对n是2的幂加以证明,用数学归纳法
假设对于n=2^k琴生不等式成立,那么对于n=2^(k+1)
(f(x1)+f(x2)+...+f(xn))/n
=((f(x1)+f(x2)+...+f(x(n/2)))/(n/2)+(f(x(n/2+1))+...+f(xn))/(n/2))/2
≥(f(((x1+x2+...+x(n/2))/(n/2))+f((x(n/2+1)+...+xn)/(n/2)))/2
≥f(((((x1+x2+...+x(n/2))/(n/2)+(x(n/2+1)+...+xn)/(n/2)))/2)
=f((x1+x2+...+xn)/n)
所以对于所有2的幂,琴生不等式成立.
现在对于一个普通的n,如果n不是2的幂,我们可以找到一个k,使得2^k>n
然后我们设
x(n+1)=x(n+2)=...=x(2^k)=(x1+x2+...+xn)/n
代入2^k阶的琴生不等式结论,整理后就可以得到结论.
现在看看如何使用琴生不等式证明平方平均不等式
(x1^2+x2^2+...+xn^2)/n>=[(x1+x2+...+xn)/n]^2
显然,我们可以查看函数f(x)=x^2
由于
(f(x1)+f(x2))/2=(x1^2+x2^2)/2=(2x1^2+2x2^2)/4≥(x1^2+x2^2+2x1x2+(x1-x2)^2)/4≥(x1^2+x2^2+2x1x2)/4=((x1+x2)/2)^2
所以f(x)=x^2是凸函数
所以我们可以得到,对于任意x1,x2,...,xn,
有(f(x1)+f(x2)+...+f(xn))/n≥f((x1+x2+...+xn)/n)
也就是n阶平方平均不等式.
从上面证明过程我们知道通常情况用初等方法判断函数的凹凸性比较麻烦.
不过如果利用数学分析我们可以有个非常方便的结论.
如果f(x)二阶可导,而且f''(x)≥0,那么f(x)是下凸函数(凸函数)
如果f(x)二阶可导,而且f''(x)≤0,那么f(x)是上凸函数(凹函数)
至于这个证明,只要使用f(x)的泰勒展开式,利用其二阶余项就可以证明的.(或者构造一个函数采用中值定理)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
我们一起去冬奥
2015-12-25 · TA获得超过1872个赞
知道大有可为答主
回答量:2989
采纳率:60%
帮助的人:2135万
展开全部
数学归纳法
追问
可以给出证明嘛,我证到有一步之后证不出来了
追答

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式