已知2x²+3y²-6x=0(x,y∈R)则x²+y²的最大值是多少??

 我来答
黑科技1718
2022-10-06 · TA获得超过5876个赞
知道小有建树答主
回答量:433
采纳率:97%
帮助的人:81.9万
展开全部
已知2x²+3y²-6x=0(x,y∈R),
2(x-3/2)²+3y²-2*3/2²=0
2(x-3/2)²+3y²=3/2
(x-3/2)²/(3/4)+y²/(1/2)=1
是一个中心为(3/2,0)长半轴为√3/2,短半轴为√2/2的椭圆
可设x=√3/2cosθ+3/2,y=√2/2sinθ
x²+y²
=3/4cos²θ+2*√3/2*3/2cosθ+9/4+1/2sin²θ
=1/4cos²θ+1/2cos²θ+3√3/2cosθ+9/4+1/2sin²θ
=1/4cos²θ+3√3/2cosθ+11/4
=1/4[cos²θ+6√3cosθ+(3√3)²]-1/4*(3√3)²+11/4
=1/4(cosθ+3√3)²-27/4+11/4
当cosθ=1时x²+y²最大
x²+y²最大=1/4(1+3√3)²-4=1/4(1+27+6√3)-4=3+3√3/2,3,已知2x²+3y²-6x=0(x,y∈R)则x²+y²的最大值是多少?
高中数学选修4-4的题,用参数方程解答
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式