最大似然估计法的原理是什么?

 我来答
帐号已注销
2023-01-03 · TA获得超过835个赞
知道大有可为答主
回答量:7074
采纳率:100%
帮助的人:164万
展开全部

最大似然估计,对于点估计,有矩估计法和最大似然估计法。

  • 矩估计法,其基于大数定律,求解未知参数θ θθ的时候,是一种简单的替换的思想(样本矩估计总体矩)。

  • 最大似然估计法,基于极大似然原理(概率大的事件在一次观测中更容易发生)。求解未知参数θ θθ的时候,是当它作为估计值时,使样本出现的概率(样本出现的可能性)最大。

    离散型总体最大似然估计法的步骤为:选择样本值→构造似然函数(每个样本值对应概率相乘)→似然函数取对数(方便计算)→求导→令导数为0→求出未知参数θ的最大似然估计值。离散型和连续型唯一的区别,就是离散型取的是每一个样本点的概率,而连续型取的是每一个样本点的概率密度。它们都包含了参数θ θθ,都可以通过取对数求导来算出最大似然估计值。

    推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

    为你推荐:

    下载百度知道APP,抢鲜体验
    使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
    扫描二维码下载
    ×

    类别

    我们会通过消息、邮箱等方式尽快将举报结果通知您。

    说明

    0/200

    提交
    取消

    辅 助

    模 式