计算a/(a-b)(a-c)+b/(b-c)(b-a)+c/(c-a)(c-b)详细讲解
1个回答
展开全部
a/(a-b)(a-c)+b/(b-c)(b-a)+c/(c-a)(c-b)
=a/(a-b)(a-c)-b/(b-c)(a-b)+c/(a-c)(b-c)
=a(b-c)/(a-b)(a-c)(b-c)-b(a-c)/(a-b)(b-c)(a-c)+c(a-b)/(a-b)(a-c)(b-c)
=[a(b-c)-b(a-c)+c(a-b)]/(a-b)(a-c)(b-c)
=(ab-ac-ab+bc+ac-bc)/(a-b)(a-c)(b-c)
=0/(a-b)(a-c)(b-c)
=0
=a/(a-b)(a-c)-b/(b-c)(a-b)+c/(a-c)(b-c)
=a(b-c)/(a-b)(a-c)(b-c)-b(a-c)/(a-b)(b-c)(a-c)+c(a-b)/(a-b)(a-c)(b-c)
=[a(b-c)-b(a-c)+c(a-b)]/(a-b)(a-c)(b-c)
=(ab-ac-ab+bc+ac-bc)/(a-b)(a-c)(b-c)
=0/(a-b)(a-c)(b-c)
=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询