两条直线关于y=x对称,它们的斜率互为倒数,那么两条直线关于y=-x对称,它们的斜率又有什么关系?
互为倒数。
已知关于y轴对称的两条直线斜率互为相反数,可知y=x与y=-x关于y轴对称,若两条直线关于y=-x对称,设斜率分别为k1,k2,将图像整体关于y轴对称,这两条直线关于y轴的对称直线关于y=x对称,又已知关于y轴对称的两条直线斜率互为相反数,且两条直线关于y=x对称,它们的斜率互为倒数,即有-k1与-k2互为倒数,所以k1与k2互为倒数
倒数是指数学上设一个数x与其相乘的积为1的数,记为1/x,过程为“乘法逆”,除了0以外的数都存在倒数, 分子和分母相倒并且两个乘积是1的数互为倒数,0没有倒数。
扩展资料
实数的倒数
1.求一个分数的倒数,例如 ,我们只须把分数的分子和分母交换位置,即得到倒数。
2.求一个整数的倒数,只须把这个整数看成是分母为1的分数,然后再按求分数倒数的方法即可得到。再把 这个分数的分子和分母交换位置,把分子做分母,分母做分子。
曲线的变化趋势仍可以用过曲线上一点的切线的斜率即导数来描述。导数的几何意义是该函数曲线在这一点上的切线斜率。
f'(x)>0时,函数在该区间内单调递增,曲线呈向上的趋势;f'(x)<0时,函数在该区间内单调减,曲线呈向下的趋势。
在(a,b)f''(x)<0时,函数在该区间内的图形是凸(从上向下看)的;f''(x)>0时,函数在该区间内的图形是凹的。
互为倒数。
已知关于y轴对称的两条直线斜率互为相反数,可知y=x与y=-x关于y轴对称,若两条直线关于y=-x对称,设斜率分别为k1,k2,将图像整体关于y轴对称,这两条直线关于y轴的对称直线关于y=x对称。
又已知关于y轴对称的两条直线斜率互为相反数,且两条直线关于y=x对称,它们的斜率互为倒数,即有-k1与-k2互为倒数,所以k1与k2互为倒数。
扩展资料:
解析几何中,要通过点的坐标和直线方程来研究直线通过坐标计算求得,使方程形式上较为简单。如果只用倾斜角一个概念,那么它在实际上相当于反正切函数值arctank,难于直接通过坐标计算求得,并使方程形式变得复杂。
坐标平面内,每一条直线都有唯一的倾斜角,但不是每一条直线都有斜率,倾斜角是90°的直线(即x轴的垂线)没有斜率。
曲线的变化趋势仍可以用过曲线上一点的切线的斜率即导数来描述。导数的几何意义是该函数曲线在这一点上的切线斜率。
f'(x)>0时,函数在该区间内单调递增,曲线呈向上的趋势;f'(x)<0时,函数在该区间内单调减,曲线呈向下的趋势。
在(a,b)f''(x)<0时,函数在该区间内的图形是凸(从上向下看)的;f''(x)>0时,函数在该区间内的图形是凹的。
互为倒数。
已知关于y轴对称的两条直线斜率互为相反数,可知y=x与y=-x关于y轴对称,若两条直线关于y=-x对称,设斜率分别为k1,k2,将图像整体关于y轴对称,这两条直线关于y轴的对称直线关于y=x对称。
又已知关于y轴对称的两条直线斜率互为相反数,且两条直线关于y=x对称,它们的斜率互为倒数,即有-k1与-k2互为倒数,所以k1与k2互为倒数。
扩展资料:
坐标平面内,每一条直线都有唯一的倾斜角,但不是每一条直线都有斜率,倾斜角是90°的直线(即x轴的垂线)没有斜率。
曲线的变化趋势仍可以用过曲线上一点的切线的斜率即导数来描述。导数的几何意义是该函数曲线在这一点上的切线斜率。
f'(x)>0时,函数在该区间内单调递增,曲线呈向上的趋势;f'(x)<0时,函数在该区间内单调减,曲线呈向下的趋势。
在(a,b)f''(x)<0时,函数在该区间内的图形是凸(从上向下看)的;f''(x)>0时,函数在该区间内的图形是凹的。
若满意,请采纳