切比雪夫不等式是什么?
切比雪夫(Chebyshev)不等式:对于任一随机变量X ,若EX与DX均存在,则对任意ε>0,恒有P{|X-EX|>=ε}<=DX/ε^2。切比雪夫不等式可以使人们在随机变量X的分布未知的情况下,对事件|x-u|<ε概率作出估计。
19世纪俄国数学家切比雪夫研究统计规律中,论证并用标准差表达了一个不等式,这个不等式具有普遍的意义,被称作切比雪夫定理,其大意是:
任意一个数据集中,位于其平均数m个标准差范围内的比例(或部分)总是至少为1-1/m2,其中m为大于1的任意正数。对于m=2,m=3和m=5有如下结果:
所有数据中,至少有3/4(或75%)的数据位于平均数2个标准差范围内。
所有数据中,至少有8/9(或88.9%)的数据位于平均数3个标准差范围内。
所有数据中,至少有24/25(或96%)的数据位于平均数5个标准差范围内。
切比雪夫(Chebyshev)不等式它适用于几乎无限种类型的概率分布,并在比正态更宽松的假设下工作。
扩展资料:
切比雪夫(1821~1894),俄文原名Пафну́тий Льво́вич Чебышёв,俄罗斯数学家、力学家。1821年5月26日生于卡卢加省奥卡托沃,1894年12月8日卒于彼得堡。
他一生发表了70多篇科学论文,内容涉及数论、概率论、函数逼近论、积分学等方面。他证明了贝尔特兰公式,自然数列中素数分布的定理,大数定律的一般公式以及中心极限定理。他不仅重视纯数学,而且十分重视数学的应用。
关于切比雪夫在概率论中所引进的方法论变革的伟大意义,苏联著名数学家柯尔莫哥洛夫在“俄罗斯概率科学的发展”(Роль сусской нaуки в сaзвии теории вероятносгей,ИБИД,стр,53—64)一文中写道:
“从方法论的观点来看,切比雪夫所带来的根本变革的主要意义不在于他是第一个在极限理论中坚持绝对精确的数学家(A.棣莫弗(de Moivre)、P-S.拉普拉斯(Laplace)和泊松的证明与形式逻辑的背景是不协调的,他们不同于雅格布·伯努利,后者用详尽的算术精确性证明了他的极限定理)。
切比雪夫的工作的主要意义在于他总是渴望从极限规律中精确地估计任何次试验中的可能偏差并以有效的不等式表达出来。此外,切比雪夫是清楚地预见到诸如‘随机变量’及其‘期望(平均)值’等概念的价值,并将它们加以应用的第一个人。
参考资料来源:百度百科——切比雪夫定理