设n阶矩阵A满足Am=0,m是正整数,证:E-A可逆,且(E-A)=E+A+A2+A3+……Am-1 我来答 1个回答 #热议# 不吃早饭真的会得胆结石吗? 科创17 2022-07-26 · TA获得超过5913个赞 知道小有建树答主 回答量:2846 采纳率:100% 帮助的人:176万 我也去答题访问个人页 关注 展开全部 利用公式 E=E-A^m=(E-A)(E+A+A^2+A^3+……A^m-1) 可得. 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 其他类似问题 2021-09-16 设A为n阶矩阵,且A不是零矩阵,,且存在正整数k≥2,使A^k=0,证明:E-A可逆,且(E-A)=E+A+A^2+……A^k-1 3 2022-07-08 设a为n阶矩阵,且a^3=0,证明e-a及e+a都是可逆矩阵 2021-10-03 设A为n阶矩阵,|E-A|≠0,证明:(E+A)(E-A)*=(E-A)*(E+A) 2022-08-11 设n阶矩阵A满足A^m=0,m是正整数,证E-A可逆 2022-07-30 若n阶矩阵A满足A^n=0,证明:E-A可逆,并求(E-A)^(-1) 2022-05-22 设A为n阶非零矩阵,E为n阶单位矩阵,若A^3=O,则E+A是否可逆? 2022-06-29 设A为n阶矩阵,且A^4=0,证明(E-A)^-1=A^3+A^2+A+E 2022-08-03 设n阶矩阵A满足A^2=E,且|A+E|≠0,证明A=E 为你推荐: