圆锥体的侧面积公式是什么?
正圆锥的侧面积公式:S=πrl,S为侧面积。正圆锥的侧面可以展开为平面上的一个扇形。这个扇形所在的圆半径就是圆锥的斜高,对应的圆弧长为底部圆形的周长。其他条件下,圆锥的侧面积可用以下公式:
1、圆锥的侧面积=母线的平方×π×(360分之扇形的度数);
2、圆锥的侧面积=1/2×母线长×底面周长;
3、圆锥的侧面积=π×底面圆的半径×母线。
前面三个公式是按使用的频率排列的,第一个公式用得最多,第二个公式次之,最后一个公式用得较少。然而事实上圆锥侧面积最根源的公式却是最后一个。
因为圆锥侧面展开图是一个扇形,根据扇形的面积公式:扇形的面积等于圆心角,圆周率与扇形的半径的平方的积,除以360度;即扇形的面积是圆的面积分成360分之后,得到圆心角等于1度的扇形的面积,再乘以原扇形的圆心角。
这样就可以得到圆锥侧面积最原始的公式。只要知道圆锥侧面展开图得到的扇形的圆心角以及圆锥的母线,圆锥的母线就是展开得到的扇形的半径,就可以求圆锥的侧面积了。
圆锥体的特点
1、侧面展开是一个扇形;
2、只有下底为圆。所以从正上面看是一个圆;
3、从侧面水平看是一个等腰三角形;
4、由等腰三角形绕底边的高旋转得到一个圆锥;也可以由直角三角形绕一个直角边旋转得到一个圆锥;
5、圆锥体是轴对称的;
6、圆锥侧面展开扇形的弧长等于底边圆的周长;横截面是一个圆形;纵截面是一个等腰三角形;
7、所有母线的长度都相等;母线的长度大于锥体的高。
2021-01-25 广告