已知函数f(x)=(2^x-1)/(2^x+1),则不等式f(x-2)+f(x²-4<0的解集为多少
1个回答
2016-07-14
展开全部
f(x)=(2^x-1)/(2^x+1)
f(x-2) = {2^(x-2)-1}/{2^(x-2)+1} = (2^x-4)/(2^x+4)
f(x²-4) = {2^(x²-4-1}/{2^(x²-4)+1} = (2^x²-16)/(2^x²+16)
f(x-2)+f(x²-4)<0
(2^x-4)/(2^x+4) + (2^x²-16)/(2^x²+16) < 0
注意到2^x+4>0并且2^x²+16>0
∴两边同乘以(2^x+4)(2^x²+16)得:
(2^x-4)(2^x²+16) + (2^x+4)(2^x²-16) < 0
2^x³-4*2^x²+16*2^x-64 + 2^x³+4*2^x²-16*2^x-64 < 0
2 * 2^x³ - 2 * 64 < 0
2^x³ - 64 < 0
2^x³ < 64
x³ < 6
x<3次根号下6
f(x-2) = {2^(x-2)-1}/{2^(x-2)+1} = (2^x-4)/(2^x+4)
f(x²-4) = {2^(x²-4-1}/{2^(x²-4)+1} = (2^x²-16)/(2^x²+16)
f(x-2)+f(x²-4)<0
(2^x-4)/(2^x+4) + (2^x²-16)/(2^x²+16) < 0
注意到2^x+4>0并且2^x²+16>0
∴两边同乘以(2^x+4)(2^x²+16)得:
(2^x-4)(2^x²+16) + (2^x+4)(2^x²-16) < 0
2^x³-4*2^x²+16*2^x-64 + 2^x³+4*2^x²-16*2^x-64 < 0
2 * 2^x³ - 2 * 64 < 0
2^x³ - 64 < 0
2^x³ < 64
x³ < 6
x<3次根号下6
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询