x的x次方怎么求导
17个回答
展开全部
(x^x)'=(x^x)(lnx+1)
求法:令x^x=y
两边取对数:lny=xlnx
两边求导,应用复合函数求导法则:
(1/y)y'=lnx+1
y'=y(lnx+1)
即:y'=(x^x)(lnx+1)
扩展资料
求导法则:对于一个已经确定存在且可导的情况下,我们可以用复合函数求导的链式法则来进行求导。在方程左右两边都对x进行求导,由于y其实是x的一个函数,所以可以直接得到带有 y' 的一个方程,然后化简得到 y' 的表达式。
隐函数理论的基本问题就是:在适合原方程的一个点的邻近范围内,在函数F(x,y)连续可微的前提下,什么样的附加条件能使得原方程确定一个惟一的函数y=ƒ(x),不仅单值连续,而且连续可微,其导数由完全确定。隐函数存在定理就用于断定就是这样的一个条件,不仅必要,而且充分。
展开全部
可以采用对数求导法较简单
y=x^x(x为正数)
两侧取自然对数lny=xlnx
两侧对x求导,注意左侧lny是复合函数求导,应先对y求导,然后y对x求导得到(1/y)·y'=lnx+1
整理一下并将y=x^x代回可得到y‘=y(lnx+1)=x^x(lnx+1)
y=x^x(x为正数)
两侧取自然对数lny=xlnx
两侧对x求导,注意左侧lny是复合函数求导,应先对y求导,然后y对x求导得到(1/y)·y'=lnx+1
整理一下并将y=x^x代回可得到y‘=y(lnx+1)=x^x(lnx+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
y=x^x
=e^[ln(x^x)]
=e^(xlnx)
令u=xlnx,则y=e^u
y'=(x^u)'•u'
=(e^u)•(xlnx)'
=[e^(xlnx)]•[x'lnx+x(lnx)']
=[e^(xlnx)]•(lnx+x•1/x)
=(x^x)(1+lnx)
=e^[ln(x^x)]
=e^(xlnx)
令u=xlnx,则y=e^u
y'=(x^u)'•u'
=(e^u)•(xlnx)'
=[e^(xlnx)]•[x'lnx+x(lnx)']
=[e^(xlnx)]•(lnx+x•1/x)
=(x^x)(1+lnx)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
y=x^(x^x)
则 lny=(x^x)lnx
令t=x^x
则 lnt=xlnx
t=e^(xlnx)
t'=(lnx+1)e^(xlnx)
lny=(x^x)lnx=tlnx
y=e^(tlnx)
y'=(t'lnx+t/x)e^(tlnx)
=[lnx(lnx+1)e^(xlnx)+(x^x)/x]*e^[(x^x)lnx]
~请首先关注【我的采纳率】
~如果你认可我的回答,请及时点击【采纳为最佳回答】按钮~
~手机提问者在客户端右上角评价点【满意】即可。
~你的采纳是我前进的动力~~
~如还有新的问题,欢迎另外向我求助,答题不易,敬请谅解~~
O(∩_∩)O,记得好评和采纳,互相帮助
祝学习进步!
则 lny=(x^x)lnx
令t=x^x
则 lnt=xlnx
t=e^(xlnx)
t'=(lnx+1)e^(xlnx)
lny=(x^x)lnx=tlnx
y=e^(tlnx)
y'=(t'lnx+t/x)e^(tlnx)
=[lnx(lnx+1)e^(xlnx)+(x^x)/x]*e^[(x^x)lnx]
~请首先关注【我的采纳率】
~如果你认可我的回答,请及时点击【采纳为最佳回答】按钮~
~手机提问者在客户端右上角评价点【满意】即可。
~你的采纳是我前进的动力~~
~如还有新的问题,欢迎另外向我求助,答题不易,敬请谅解~~
O(∩_∩)O,记得好评和采纳,互相帮助
祝学习进步!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
用换元法:
令:y=x^(x)
则:
y=x^(x)
=e^[ln(x^x)]
=e^(xlnx)
再令u=xlnx,则y=e^u
y'=(x^u)'•u'
=(e^u)•(xlnx)'
=[e^(xlnx)]•[x'lnx+x(lnx)']
=[e^(xlnx)]•(lnx+x•1/x)
=(x^x)(1+lnx)
令:y=x^(x)
则:
y=x^(x)
=e^[ln(x^x)]
=e^(xlnx)
再令u=xlnx,则y=e^u
y'=(x^u)'•u'
=(e^u)•(xlnx)'
=[e^(xlnx)]•[x'lnx+x(lnx)']
=[e^(xlnx)]•(lnx+x•1/x)
=(x^x)(1+lnx)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |