求问一道高数题
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励20(财富值+成长值)
展开全部
dy/dx=(√x^2+y^2-x)/y,这是个齐次微分方程,只需令y=ux,带入就有u+x*du/dx=[√(1+u^2)-1]/u(不妨先讨论x>0),然后移项udu/[√(1+u^2)-1]=dx/x,然后自己两边积分吧……不演示了
参考:网页链接
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
u=√(x^2+y^2)
du = (xdx + ydy) /√(x^2+y^2)
ydy = udu -xdx
/
(x-√(x^2+y^2)) dx +ydy = 0
(x-u) dx + du -xdx= 0
-udx +du =0
∫du/u = ∫dx
ln|u| = x+C1
u = C2.e^x
√(x^2+y^2) =C2.e^x
x^2+y^2 = Ce^(2x)
y^2 = Ce^(2x) - x^2
y = √[Ce^(2x) - x^2]
du = (xdx + ydy) /√(x^2+y^2)
ydy = udu -xdx
/
(x-√(x^2+y^2)) dx +ydy = 0
(x-u) dx + du -xdx= 0
-udx +du =0
∫du/u = ∫dx
ln|u| = x+C1
u = C2.e^x
√(x^2+y^2) =C2.e^x
x^2+y^2 = Ce^(2x)
y^2 = Ce^(2x) - x^2
y = √[Ce^(2x) - x^2]
追问
为啥ydy=udu-xdx会直接变成ydy=du-dx
追答
u=√(x^2+y^2)
du = (xdx + ydy) /√(x^2+y^2)
du = (xdx + ydy) /u
udu =xdx + ydy
ydy = udu -xdx
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |