展开全部
1+cosx = 2[cos(x/2)]^2
∫(0->π/2) x/(1+cosx ) dx
=(1/2)∫(0->π/2) x[sec(x/2)]^2 dx
=∫(0->π/2) x dtan(x/2)
=[xtan(x/2)]|(0->π/2) - ∫(0->π/2) tan(x/2) dx
=π/4 - ∫(0->π/2) sin(x/2)/cos(x/2) dx
=π/4 +2 ∫(0->π/2) dcos(x/2)/cos(x/2)
=π/4 +2 [ln|cos(x/2)|]|(0->π/2)
=π/4 +2ln(1/√2)
=π/4 -ln2
∫(0->π/2) x/(1+cosx ) dx
=(1/2)∫(0->π/2) x[sec(x/2)]^2 dx
=∫(0->π/2) x dtan(x/2)
=[xtan(x/2)]|(0->π/2) - ∫(0->π/2) tan(x/2) dx
=π/4 - ∫(0->π/2) sin(x/2)/cos(x/2) dx
=π/4 +2 ∫(0->π/2) dcos(x/2)/cos(x/2)
=π/4 +2 [ln|cos(x/2)|]|(0->π/2)
=π/4 +2ln(1/√2)
=π/4 -ln2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询