命题p:在△ABC中,∠C>∠B是sinC>sinB的充分不必要条件;命题q:a...
命题p:在△ABC中,∠C>∠B是sinC>sinB的充分不必要条件;命题q:a>b是ac2>bc2的充分不必要条件.则()A.p假q真B.p真q假C.p∨q为假D.p∧...
命题p:在△ABC中,∠C>∠B是sinC>sinB的充分不必要条件;命题q:a>b是ac2>bc2的充分不必要条件.则( ) A.p假q真 B.p真q假 C.p∨q为假 D.p∧q为真
展开
展开全部
分析:先判断p⇒q与q⇒p的真假,再根据充要条件的定义给出结论;也可判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
解答:解:在△ABC中,
若∠C>∠B,
根据大角对大边,可得c>b
再由正弦定理边角互化,可得sinC>sinB
反之也成立.
故命题p:在△ABC中,∠C>∠B是sinC>sinB的充分不必要条件是假命题
由a>b,当C=0时,ac2>bc2不一定成立,
但若ac2>bc2成立,C≠0,则a>b成立,
所以a>b是ac2>bc2的必要不充分条件,
故命题q为假命题,
即p假q假,
所以p∨q为假.
故选C.
点评:判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
解答:解:在△ABC中,
若∠C>∠B,
根据大角对大边,可得c>b
再由正弦定理边角互化,可得sinC>sinB
反之也成立.
故命题p:在△ABC中,∠C>∠B是sinC>sinB的充分不必要条件是假命题
由a>b,当C=0时,ac2>bc2不一定成立,
但若ac2>bc2成立,C≠0,则a>b成立,
所以a>b是ac2>bc2的必要不充分条件,
故命题q为假命题,
即p假q假,
所以p∨q为假.
故选C.
点评:判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询