求lim (x+x²+x³+····+x的n次方—n)÷(x-1) x→1
2个回答
展开全部
用罗比塔法则
等价于求:1+x+x^2+…+x^(n-1)=(x^n-1)/(x-1)当x趋近于1时的极限
再次用罗比塔法则得:nx^(n-1)当x趋近于1时的极限
显然这个极限是n
等价于求:1+x+x^2+…+x^(n-1)=(x^n-1)/(x-1)当x趋近于1时的极限
再次用罗比塔法则得:nx^(n-1)当x趋近于1时的极限
显然这个极限是n
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询