如图,△ABC中,AB=AD=DC,AC=BC,求∠C的度数
展开全部
先设∠C=x,由AB=AC可知,∠B=x,由AD=DC可知∠C=∠DAC=x,由三角形外角的性质可知∠ADB=∠C+∠DAC=2x,根据AB=BD可知∠ADB=∠BAD=2x,再在△ABD中,由三角形内角和定理即可得出关于x的一元一次方程,求出x的值即可.
设∠C=x,
∵AB=AC,
∴∠C=∠B=x,
∵AD=DC,
∴∠C=∠DAC=x,
∴∠ADB=∠C+∠DAC=2x,
∵AB=BD,
∴∠ADB=∠BAD=2x,
在△ABD中,∠B=x,∠ADB=∠BAD=2x,
∴x+2x+2x=180°,
解得x=36°.
∴∠C=36°.
设∠C=x,
∵AB=AC,
∴∠C=∠B=x,
∵AD=DC,
∴∠C=∠DAC=x,
∴∠ADB=∠C+∠DAC=2x,
∵AB=BD,
∴∠ADB=∠BAD=2x,
在△ABD中,∠B=x,∠ADB=∠BAD=2x,
∴x+2x+2x=180°,
解得x=36°.
∴∠C=36°.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询