比较SPSS和SAS处理方差分析

比较SPSS和SAS处理方差分析方差分析研究多因素对观测变量影响,通过构造F统计量来判定各个因素的均数间有无统计学上的差异。进行方差分析,... 比较SPSS和SAS处理方差分析方差分析研究多因素对观测变量影响,通过构造F统计量来判定各个因素的均数间有无统计学上的差异。进行方差分析, 展开
 我来答
环球青藤
2020-09-29 · 专注大学生职业技能培训在线教育品牌
环球青藤
环球青藤开设了就业、技能培训、职业资格考试、学历提升、外语培训、留学和兴趣类专业课程、为大学生提供考试/就业双重服务。
向TA提问
展开全部
比较SPSS和SAS处理方差分析
方差分析研究多因素对观测变量影响,通过构造F统计量来判定各个因素的均数间有无统计学上的差异。进行方差分析,需要满足可比性、正态性、以及方差齐性的条件,最关键的地方是F统计量的构造。方差分析的基本原理是设有n个总体,各总体分别服从正态分布,假定各总体方差相等。现从各总体随机抽取样本。透过各总体的样本数据推断n个总体的均值是否相等。
曾粗略地讨论SAS进行方差分析的代码,这里对比使用SAS和SPSS两种软件更深入地学习方差分析。
一、单因素的方差分析(一种因素的不同水平是否对观测变量是否有影响)
sas代码:
proc anova data=yuyu;
class a; /*因素a,有不同的水平*/
model y=a;
run;
如果该检验发现a因素的不同水平有显著性差异,那么可以继续进行多重比较,利用proc npar1way可以进行Kruskal-Wallis检验得到结果。
spss操作:Analyze — Compare Mean — One-Way ANOVA,利用Post Hoc选项可以实现多重比较。二、多因素方差分析(两个或两个以上的因素对观测变量是否有影响),以两因素为例。sas代码:proc anova data=yuyu;class a b; /*存在a b两个因素*/model y=a b a*b; /*考虑ab交互作用*/means a b a*b; /*考虑因素对应的均值比较*/run; 更多的选项,可以参考文档。spss操作: Analyze— General Linear Model — Univariate ,然后在相应的选项下操作。对应sas代码,如果考虑交互作用,需要选择饱和模型选项。三、多元方差分析(某几个因素的不同水平对观测变量是否有影响)spss操作:Analyze— General Linear Model — Multivariate ,进而进行相关选项的操作。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式