谈谈对泛函分析的认识
1个回答
展开全部
泛函分析是20世纪30年代形成的数学分科,是从变分问题,积分方程和理论物理的研究中发展起来的。它综合运用函数论,几何学,现代数学的观点来研究无限维向量空间上的泛函,算子和极限理论。它可以看作无限维向量空间的解析几何及数学分析。泛函分析在数学物理方程,概率论,计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的数学工具。
泛函分析(Functional Analysis)是现代数学的一个分支,隶属于分析学,其研究的主要对象是函数构成的空间。泛函分析是由对函数的变换(如傅立叶变换等)的性质的研究和对微分方程以及积分方程的研究发展而来的。使用泛函作为表述源自变分法,代表作用于函数的函数。巴拿赫(Stefan Banach)是泛函分析理论的主要奠基人之一,而数学家兼物理学家维多·沃尔泰拉(Vito Volterra)对泛函分析的广泛应用有重要贡献。
泛函分析所研究的大部分空间都是无穷维的。为了证明无穷维向量空间存在一组基,必须要使用佐恩引理(Zorn's Lemma)。此外,泛函分析中大部分重要定理都构建与罕-巴拿赫定理的基础之上,而该定理本身就是选择公理(Axiom of Choice)弱于布伦素理想定理(Boolean prime ideal theorem)的一个形式。
泛函分析(Functional Analysis)是现代数学的一个分支,隶属于分析学,其研究的主要对象是函数构成的空间。泛函分析是由对函数的变换(如傅立叶变换等)的性质的研究和对微分方程以及积分方程的研究发展而来的。使用泛函作为表述源自变分法,代表作用于函数的函数。巴拿赫(Stefan Banach)是泛函分析理论的主要奠基人之一,而数学家兼物理学家维多·沃尔泰拉(Vito Volterra)对泛函分析的广泛应用有重要贡献。
泛函分析所研究的大部分空间都是无穷维的。为了证明无穷维向量空间存在一组基,必须要使用佐恩引理(Zorn's Lemma)。此外,泛函分析中大部分重要定理都构建与罕-巴拿赫定理的基础之上,而该定理本身就是选择公理(Axiom of Choice)弱于布伦素理想定理(Boolean prime ideal theorem)的一个形式。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询