伴随矩阵秩和原矩阵的关系是什么?
1个回答
展开全部
1、原矩阵秩为n 伴随为n。
2、原矩阵秩为n-1 伴随为1。
3、原矩阵秩小于n-1伴随为0。
4、伴随A* =1/|A| * A^-1。
5、当A满秩,A^-1也满秩,所以伴随也满秩。
从定义来伴随阵由余子式构成,当原矩阵秩为n-1时,则至少存在一个n-1阶行列式不为0。所以为1。当小于n-1时,任何n-1阶子式都等于0,所以伴随阵为0阵,秩为0。
伴随矩阵的求法:
1、当矩阵是大于等于二阶时:
主对角元素是将原矩阵该元素所在行列去掉再求行列式,非主对角元素是原矩阵该元素的共轭位置的元素去掉所在行列求行列式乘以(-1)^x+y,x与y为该元素的共轭位置的元素的行和列的序号,序号从1开始。
主对角元素实际上是非主对角元素的特殊情况,因为x=y,所以(-1)^x+y=1,一直是正数,没必要考虑主对角元素的符号问题。
2、当矩阵的阶数等于一阶时,伴随矩阵为一阶单位方阵。
以上内容参考百度百科--伴随矩阵
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询