二次函数的性质和平移规律
一般地,把形如y=ax²+bx+c(a≠0)(a、b、c是常数)的函数叫做二次函数,下面总结了二次函数的性质和平移规律,供大家参考。
二次函数的性质
1.二次函数的图像是抛物线,抛物线是轴对称图形。对称轴为直线x=-b/2a。
2.二次项系数a决定抛物线的开口方向和大小。
3.一次项系数b和二次项系数a共同决定对称轴的位置。
4.常数项c决定抛物线与y轴交点。抛物线与y轴交于(0,c)。
当c>0时,图像与y轴正半轴相交。
当c<0时,图像与y轴负半轴相交。
二次函数的平移规律口诀
上加下减,左加右减
y=a(x+b)²+c,是将y=ax²的二次函数图像按以下规律平移
(1)c>0时,图像向上平移c个单位(上加上)。
(2)c<0时,图像向下平移c个单位(下减)。
(3)b>0时,图像向左平移b个单位(左加)。
(4)b<0时,图像向右平移b个单位(右减)。
二次函数定义
一般地,如果y=ax 2 +bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数。
①所谓二次函数就是说自变量最高次数是2;
②二次函数y=ax 2 +bx+c(a≠0)中x、y是变量,a,b,c是常数,自变量x的取值范围是全体实数,b和c可以是任意实数,a是不等于0的实数,因为a=0时,y=ax 2 +bx+c变为y=bx+c若b≠0,则y=bx+c是一次函数,若b=0,则y=c是一个常数函数。
③二次函数y=ax 2 +bx+c(a≠0)与一元二次方程y=ax 2 +bx+c(a≠0)有密切联系,如果将变量y换成一个常数,那么这个二次函数就是一个一元二次函数。