数域P上所有三阶反对称矩阵构成的线性空间的维数是多少?
1个回答
展开全部
数域P上所有三阶反对称矩阵构成的线性空间的维数是n-1+n-2+2+1=n(n-1)/2。
由于反对称矩阵满足aij=-aji,主对角线上元素全是0,所以主对角线以下元素由主对角线以上元素唯一确定,所以维数为n-1+n-2+2+1=n(n-1)/2。
所有n阶反对称矩阵构成数域p上的线性空间的维数为____n(n-1)/2,∵反对称矩阵满足aij=-aji,矩阵对角线下方元素的个数就是其维数。
矩阵
是高等代数学中的常见工具,也常见于统计分析等应用数学学科中,在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询