如何证明e负x的极限为零

 我来答
胡彩蛋
2022-04-06 · TA获得超过358个赞
知道答主
回答量:2970
采纳率:0%
帮助的人:48.5万
展开全部
e的负x次方极限是0。
分析过程如下:e的负x次方可以写成e^(-x),可以表示成1/e^x。当x趋近于无穷时候,e^x趋向于无穷,则1/e^x的极限为0。
极限的性质:1、唯一性:若数列的极限存在,则极限值是唯一的,且它的任何子列的极限与原数列的相等。2、有界性:如果一个数列’收敛‘(有极限),那么这个数列一定有界。3、和实数运算的相容性:譬如:如果两个数列{xn},{yn}都收敛,那么数列{xn+yn}也收敛,而且它的极限等于{xn}的极限和{yn}的极限的和。4、与子列的关系:数列{xn}与它的任一平凡子列同为收敛或发散,且在收敛时有相同的极限;数列{xn}收敛的充要条件是:数列{xn}的任何非平凡子列都收敛。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式