1-n次根号下cosmx的等价无穷小是多少?
1个回答
展开全部
x->0
cost = 1-(1/2)t^2 +o(t^2)
代入 t=mx
cosmx = 1-(1/2)(mx)^2 +o(x^2)
[cosmx]^(1/n)
代入上面等价
=[1-(1/2)(mx)^2 +o(x^2)]^(1/n)
=1 - [m^2/(2n)]x^2 +o(x^2)
1-[cosmx]^(1/n)
代入上面等价
=1 -[1 - [m^2/(2n)]x^2 +o(x^2)]
=[m^2/(2n)]x^2 +o(x^2)
所以
1-[cosmx]^(1/n) 等价于[m^2/(2n)]x^2
cost = 1-(1/2)t^2 +o(t^2)
代入 t=mx
cosmx = 1-(1/2)(mx)^2 +o(x^2)
[cosmx]^(1/n)
代入上面等价
=[1-(1/2)(mx)^2 +o(x^2)]^(1/n)
=1 - [m^2/(2n)]x^2 +o(x^2)
1-[cosmx]^(1/n)
代入上面等价
=1 -[1 - [m^2/(2n)]x^2 +o(x^2)]
=[m^2/(2n)]x^2 +o(x^2)
所以
1-[cosmx]^(1/n) 等价于[m^2/(2n)]x^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询