求曲面z=2x^2+2y^2及z=6-x^2-y^2所围成的立体体积

 我来答
科创17
2022-09-01 · TA获得超过5879个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:171万
展开全部
两个方程联立 得出在xoy坐标面上的投影 即为区域D :x^2+y^2=2 ,用极坐标
区域D为 0《θ《2π ,0《ρ《√2
用二重积分 体积为
∫∫(D) [(6-x^2-y^2)-(2x^2+2y^2)]dxdy
=∫∫(D)(6-3x^2-3y^2)dxdy
=∫0~2πdθ∫0~√2(6-3ρ^2)ρdρ
=2π*(3ρ^2-3/4ρ^4)|0~√2
=2π*(3√2^2-3/4√2^4-0)
=2π*3
=6π
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式