曲线旋转体积公式是什么?

 我来答
汽车解说员小达人
高能答主

2022-11-02 · 用力答题,不用力生活
知道小有建树答主
回答量:1104
采纳率:100%
帮助的人:42万
展开全部

旋转体体积公式是V=π∫[a,b]f(x)^2dx。

绕y轴旋转体积公式同理,将x,y互换即可,V=π∫[a,b]φ(y)^2dy。

或许你说的是V=2π∫[a,b]y*f(y)dy,也是绕x轴旋转体积。

旋转体的体积等于上半部分旋转体体积的2倍

V=2∫(0,R)π[(x+b)^2-(-x+b)^2]dy。

=8bπ∫(0,R)xdy。

令x=Rcosa,y=Rsina,(a∈[0,π/2])。

V=8bπ∫(0,π/2)Rcosa*Rcosada。

=4bR^2π∫(0,π/2)(cos2a+1)da。

=4bR^2π[a+sin2a/2]|(0,π/2)。

=4πbR^2(π/2)。

=2bπ^2R^2。

1、dy求积分法

设积分区域是由两条直线x=a,x=b(a<b),两条曲线y=f(x)围成称为X型区域。特点是穿过D内部且平行于y轴的直线,与D的边界交点数不多于两点。

此时对任意取定的x0∈[a,b],过(x0,y0)作垂直于x轴的平面x=x0,该平面与曲顶柱体相交所得截面为底,z=f(x0,y)为曲边的曲边梯形,由于x0的任意性,上述曲顶柱体可看成平行截面面积S(x)从a到b求定积分的体积,从而得到dy求法。

2、dx求积分法

设积分区域是由两条直线x=a,x=b(a<b),两条曲线x=f(y)围成称为X型区域。特点是穿过D内部且平行于x轴的直线,与D的边界交点数不多于两点。

此时对任意取定的y0∈[a,b],过(x0,y0)作垂直于x轴的平面y=y0,该平面与曲顶柱体相交所得截面为底,z=f(x,yo)为曲边的曲边梯形,由于y0的任意性,上述曲顶柱体可看成平行截面面积S(x)从a到b求定积分的体积,从而得到dx求法。

Sievers分析仪
2024-12-30 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式